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Integrability in the mesoscopic dynamics
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Abstract

The Mesoscopic Mechanics (MeM), as introduced in[5], is relevant to the electron gas
confined to two spatial dimensions. It predicts a special way ofcollective response ofcorre-
lated electrons to the external magnetic field. The dynamic variable of this theory is a finite-
dimensional operator, which is required to satisfy the mesoscopic Schrödinger equation, cf.(2)
below.

In this article, we describe general solutions of the mesoscopic Schrödinger equation. Our ap-
proach is specific to the problem at hand. It relies on the unique structure of the equation and
makes no reference to any other techniques, with the exception of the geometry of unitary groups. In
conclusion, a surprising fact comes to light. Namely, the mesoscopic dynamics “filters” through
the (microscopic) Schrödinger dynamics as the latter turns out to be a clearly separable part,
in fact an autonomous factor, of the evolution. This is a desirable result also from the physical
standpoint.
© 2004 Elsevier B.V. All rights reserved.
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1. A brief description of contents and results

The mesoscopic Schrödinger equation describes evolution of an operator (denotedK)
via a nonlinear equation. In order to motivate the reader let me point out that the inter-
pretation of this operator is somewhat similar to that of the wavefunctions (of the regular
Schr̈odinger equation). Informally speaking, the pair of operatorsK andK∗ may be inter-
preted as essentially being square roots of a density matrix (cf.[5]), although the issue is
delicate due to noncommutativity. This should be viewed as comparable to the fact that
modulus-square of a wavefunction represents a probability distribution. I have proposed
the mesoscopic Schrödinger equation as a model for correlated evolution of ann-tuple of
electrons, which is relevant to the galvanomagnetic properties of the so-called correlated
materials.

In this article, I present analysis of the evolution of the system when the single particle
Hamiltonian, which is an ingredient in the equations, does not receive any feedback from
the dynamic variableK. The last section of this article, Section5, provides a brief summary
of the physical interpretation of the mesoscopic equation. In particular, it should explain
why there is incentive also to consider the case when such a feedback would exist. This
problem is not addressed in the present article. However, as regards the case limited to the
K-independent HamiltonianH, the problem is essentially resolved.

Section2 is meant to introduce the system, and to review some basic properties, dis-
play simple special solutions. Also, it is pointed out that the mesoscopic equation has the
structure of a Hamiltonian system. However, I emphasize, no further use is made of the
so-called canonical formalism. Next, in Section3, the equation is solved in the case when
the domain and image of the operatorK are fixed finite-dimensional spaces. In fact, it is
shown that the evolution of this nonlinear system with time-dependent Hamiltonian can be
represented in a certain way via a pair of curves on the unitary group. Finally, we consider
the case when the domain and the image of operatorK are a priori allowed to evolve in an
ambient Hilbert space. In this case, the single-particle Hamiltonian is densely defined on the
Hilbert space. Solutions of the mesoscopic equation in such a broad setting are described
in Section4. In particular, a uniqueness property is shown. Its proof takes advantage of
an exceptional structure of the mesoscopic equation and it could not, it seems, be deduced
from any general principles. Also, it is shown that the evolution is “driven” by ann-tuple
of Schr̈odinger particles. This is important from the physical stand-point as obtaining any
other type of carriers might be problematic from the standpoint of physical interpretation.
In addition, we note that evolution entails a phase factor which explicitly depends on the
history of the magnetic energy densityB2(t). Thus, in the fixed-domain and the moving-
domain cases alike, solutions are represented by means of simpler factors corresponding to
certain linear problems. We emphasize that this remains valid even when the constituents
of the equation are time dependent. This is what is meant byintegrability in the mesoscopic
dynamics.

Let me emphasize that while considerations in Section3 are related to the ordinary
differential equations, those of Section4 deal with partial differential equations. However,
I believe, the context of operator equations with evolving domains may be quite new. It
enables one to capture essentially new phenomena that cannot be discussed on grounds of
the PDE setting alone.
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2. The mesoscopic Schr̈odinger equation

Let F be a finite-dimensional complex vector space equipped with a Hermitian scalar
product. Lett denote the time variable, and let

H(t) : F → F,

be a predetermined family of positive definite self-adjoint operators, which we will refer to
as the Hamiltonian. In addition, letB = B(t) be a predetermined function of time, which
we will refer to as the magnetic induction. We will require throughout this article that both
B andH depend on the time variable smoothly. This is a technical assumption, which will
ensure local existence and uniqueness of solutions of certain dynamical systems that we
will encounter along the way. Introduce the dynamic operator variable

K(t) : F → G. (1)

We assume thatK has a null kernel, kerK = {0}, while the target spaceG = Im(K(t)) is
an arbitrary but fixed complex linear space also equipped with a Hermitian scalar product.
(In fact, we will consider a more general situation in Section4.) Throughout this article our
attention is focused on the mesoscopic Schrödinger equation

i�K̇ = −KH − B2(K∗)−1, (2)

where the∗ denotes Hermitian conjugation. Note that the nonlinearity is of a homogeneous
type but develops a singularity as detK → 0, which a priori may be an intimidating factor
as one attempts to solve the equation.

Let us recall here that the manifold of invertible linear transformations, say, fromF to
G, is equipped with a natural Hermitian metric given by

〈L|N〉 = trace(LN∗).

HereL andN denote two arbitrary tangent vectors which, let it be emphasized, represent
arbitrary linear transformations fromF to G. Furthermore, the Hermitian structure induces
a compatible Riemannian structure

〈L,N〉 = 
{trace(LN∗)},

as well as a symplectic form

ω(L,N) = �{trace(LN∗)}.

With this understood, let us point out that the evolution Eq.(2) is tied to the followingtotal
Hamiltonian:

Ξ(K) = trace(KHK∗) + B2 log det(KK∗). (3)
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Indeed, a calculation shows that the differential ofΞ is given by

dΞK[L] = d

dε
|ε=0Ξ(K + εL) = 
{trace((KH + B2(K∗)−1)L∗)}

= 〈KH + B2(K∗)−1, L〉. (4)

Furthermore, since


{trace(AB∗)} = �{trace(iAB∗)}.

Eq.(4) can be re-interpreted in the form

dΞK[L] = ω(i(KH + B2(K∗)−1), L).

This means precisely that(2) is theHamiltonian flow(cf. [1]) induced by the total Hamil-
tonianΞ and the symplectic structureω. While it is good to bring this theme to the reader’s
attention, it will not be explicitly essential to the discussion in this article.

Formula(4) indicates that the critical points of the HamiltonianΞ, subject to the con-
straint trace (KK∗) = const, satisfy the Euler-Lagrange equation

KH + B2(K∗)−1 = νK. (5)

This equation implies

K∗K(ν − H) = B2 Id.

In addition, sinceK∗K > 0, the equation can be satisfied only if the real scalarν dominates
all the eigenvalues ofH. In conclusion, all solutions of(5) are of the form

Kν = U
B

(ν − H)1/2 , (6)

whereU : F → G is an arbitrary unitary operator, andν is arbitrary as long as it dominates
H. The critical points are interesting in their own right, cf.[5]. In addition, they play a special
role in the time-dependent problem(2). Indeed, assume for a while that the HamiltonianH
is time-independent and diagonalized by vectors|ψn〉 ∈ F , so that

H |ψn〉 = En|ψn〉 (7)

for a collection of positive eigenvaluesEn. Apparently, the simplest solutions of Eq.(2) are
of the form

K =
∑

an(t)|ψn〉〈ψn|, (8)

wherean = rn eiϕn. Substituting this into(2) one readily obtains

rn = rn,0 and ϕn = 1

�

(
En + B2

r2
n,0

)
t + ϕn,0. (9)
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It is interesting to note that when allan’s are correlated, i.e. oscillate with the common
frequency, say,ν = En + B2/r2

n for all n, then

rn = ±B

(ν − En)1/2 .

Therefore, these special solutions conform with(6), and so they represent critical points of
the HamiltonianΞ.

3. General fixed-domain solution of the mesoscopic equation

In this section, it will be shown that Eq.(2) can be reduced to a system of simpler
equations, even whenH andB, i.e. the constituents of the equation, are time dependent. As
we set out to solve the equation, the first useful artifice is to use polar representation of the
operator. Namely, let

K = RU, (10)

whereR = R∗ is positive definite, andU−1 = U∗, i.e.U is unitary. It ought to be emphasized
that here the matrixU stands on the right, which is in contrast to the situation in(6). For a
givenK, its polar representation is determined by setting

R =
√
KK∗ : G → G and U = R−1K : F → G.

A direct calculation shows thatU selected in this way is unitary. It is well known that
with the requirement of positive definiteness ofR the polar decomposition is unique. Next,
observe that whenK satisfies Eq.(2), then

�
d

dt
(R2) = � d

dt
(KK∗) = �K̇K∗ + �KK̇∗

= −i(−KH − B2(K∗)−1)K∗ + iK(−HK∗ − B2K−1)

= iKHK∗ + iB2 − iKHK∗ − iB2 = 0.

It ought to be emphasized again that the calculation remains valid whether or not the
Hamiltonian and the magnetic field depend on the time variable. Let us now setK(0) = K0.
We have

R2 = K0K
∗
0.

There is only one positive definite, self-adjointR satisfying this condition. SinceK0K
∗
0 is

positive definite and self-adjoint, it can be diagonalized in a certain basis so that

K0K
∗
0 = diag[λ2

1, λ
2
2, . . . , λ

2
N ],
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and, in the same basis

R = diag[|λ1|, |λ2|, . . . , |λN |].

Rdoes not depend on time. In summary, we obtain the following corollary.

Corollary 3.1. Evolution prescribed byEq.(2) is constrained to the submanifold

MR = {K : KK∗ = R2}.

All coordinate functions of the matrixKK∗ are integrals of motion. As is easily seen, MR

is diffeomorphic with the unitary group and has half the dimension of the phase space.

A similar calculation as above shows that

d

dt
Ξ(K(t)) = trace(KḢK∗) + 2BḂ log detR2. (11)

In particular, as the system evolves, change in the entropy part of the total Hamiltonian only
depends onB(t). If H does not depend on time, then trace (KHK∗) is an additional integral
of motion.

We now continue to discuss solutions of(2). First, denote

U(0) = R−1K0 = U0.

Next, substituteK in its polar representation into Eq.(2) to obtain

i�RU̇ = −RUH − B2R−1U.

Multiplying the equation byR−1 one further obtains

i�U̇ = −UH − HBU, (12)

where

HB = B2R−2 = B2(K0K
∗
0)−1. (13)

In this way, evolution of the unitary part is determined by the predetermined constituentsH
andB as well as the initial conditionK0. In fact, it may be more practical for some purposes
to represent Eq.(12) in the form

U∗U̇ = i

�
(H + U∗HBU). (14)

The left-hand side represents a vector tangent to the trajectory, shifted to the group unit.
The right hand side, driving the evolution, represents an element in the Lie algebra of
skew-Hermitian operators. Indeed, not onlyH but alsoHB, and hence alsoU∗HBU are
Hermitian operators. Suppose at first thatH andB are all frozen in time. Since the uni-
tary group is compact and the group multiplication is smooth, the right-hand side of
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(12) defines a Lipschitz continuous vector field on the unitary group. In particular, so-
lutions of (12) are uniquely determined (via a choice of the initial condition) and ex-
ist for all time. In fact, in this case the solution may be written in the form of a power
series

U(t) = U0 + it

�
(U0H + HBU0) − t2

2!�2 (U0H
2 + 2HBU0H + H2

BU0)

− i
t3

3!�3 (U0H
3 + 3HBU0H

2 + 3H2
BU0H + H3

BU0) + · · · , (15)

Since all operators are finite-dimensional, the series converges absolutely. A straightforward
calculation shows thatU(t) satisfies(12).

We proceed to resolving the case whenH andB are allowed to vary in time smoothly.
First, representU as a product of two unitary matrices, i.e.

U(t) = V (t)W(t).

Eq.(12)yields

i�V̇W + i�VẆ = −VWH − HBVW. (16)

Secondly, multiply the equation byV ∗ on the left and byW∗ on the right. This leads to

i�V ∗V̇ + i�ẆW∗ = −WHW∗ − V ∗HBV. (17)

Now, the two factors have been separated. Indeed, ask thatW andV satisfy the following
two separate equations:

i�Ẇ = −WH, (18)

and

i�V̇ = −HBV. (19)

In the case of time-varyingH andHB only local existence of solutions of(12), (18), and
(19) is guarantied, but the uniqueness property is still retained. It follows that ifU(0) =
V (0)W(0), thenU(t) = V (t)W(t) for all t. Note thatHB depends on time only viaB, and
due to Hermicity, it can be written in a certain basis as

HB(t) = B2(t) diag[λ−2
1 , λ−2

2 , . . . , λ−2
N ].

Thus, the solution of(19)can be represented in the same basis in the form

V (t) = exp

(
i

�

∫ t

0
B2(t′)(K0K

∗
0)−1 dt′

)

= diag

[
exp

(
i

�
λ−2

1

∫ t

0
B2(t′) dt′

)
, . . . ,exp

(
i

�
λ−2
N

∫ t

0
B2(t′) dt′

)]
.

Here, we have selected the initial conditionV (0) = Id. This needs to be compensated by
the appropriate choice of the second initial condition, namelyW(0) = U0. As it turns out,
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we have essentially reduced Eq.(2) to a pair of simpler, well-understood equations. Let us
summarize the results.

Theorem 3.1. Consider the mesoscopic Schr¨odinger equation(2)with smooth constituents
H = H(t) andB = B(t). The solutionK = K(t) satisfying the initial condition

K(0) = K0 = RU0

is a uniquely defined smooth operator-valued function of time. Furthermore, the solution
admits representation in the from

K(t) =
√

K0K
∗
0 exp

(
i

�

∫ t

0
B2(t′)(K0K

∗
0)−1 dt′

)
W(t), (20)

where W satisfies

i�Ẇ = −WH(t), W(0) = U0.

When H and B are time-independent the solution exists for all time, while in general it is
only guarantied to exist locally.

Of course, if bothHB andH are time-independent, thenV(t) andW(t) represent two
geodesics of the bi-invariant metric on the unitary group, e.g. cf.[4]. They can also be
represented as power series. One can perform multiplication of the two series and grouping
of the terms to see that the product is equivalent to the series in Eq.(15). It is worthwhile
to mention that whenH depends on time,W(t) can still be represented in terms of the
time-ordered exponential, cf.[3, p. 219].

It is worthwhile to substitute the solution of(2) in the form specified inTheorem 3.1into
formula(11). A calculation involving the property that trace (AB) = trace(BA) shows that
the following holds.

Corollary 3.2. In the notation ofTheorem 3.1, we have

d

dt
Ξ(K) = trace(W∗R2WḢ) + d

dt
(B2) log detR2. (21)

Since R is fixed in time, the magnetic(entropy) part of the energy only depends on magnetic
induction during the evolution. Recall that evolution of W only depends on H, and so the
electronic part of the energy is only affected by the electronic constituent. (Of course, H
could depend on B via, say, Landau quantization.)

I would also like to highlight the fact that we have made many arbitrary choices when
solving Eq.(2). Naturally, we have made those choices so as to simplify the discussion.
In spite of that, uniqueness of solutions guaranties that the result is general. One of the
very conspicuous arbitrary choices was declaring time-independent operatorR. We need
not impose the condition of positive definiteness ofR. If that condition is dropped and when
K0K

∗
0 has degenerate eigenvalues, one can select a time-varyingRsatisfying the constraint

R2 = K0K
∗
0. Subsequently, one would redefine the auxiliary HamiltonianHB by setting
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HB = B2R−2 + i�R−1Ṙ. Naturally, this would also redefineV = V (t) and in the end yield
the same productRVas the calculation based on the time-independentR.

Let us look back at the findings in this section. Recall that Eq.(2) has a strong yet ho-
mogeneous nonlinearity. In fact, one might argue it is quadratic in nature. Our approach
was to exploit the underlying group structure. Specifically, the polar decomposition of
the dynamic variable allowed us to reduce the nonlinear initial value problem to a pair
of linear-type evolution problems. Naturally,Theorem 3.1implicitly makes a reference
to Quantum Mechanics (via the operatorW). In fact, the inter-connectedness of Quan-
tum Mechanics and the Mesoscopic Mechanics will come to sharper focus in the next
section.

4. General evolving-domain solution of the mesoscopic equation

In the previous sections we have worked under the assumption that the domain and
image of the operatorK defined in(1) are frozen in time. However, this assumption is
neither necessary nor natural in the context of the mesoscopic equation (2). Indeed, it is
natural to consider a more general setting when a priori both the domain and the image of
operatorK are allowed to evolve, i.e.

KFG(t) : F (t) → G(t). (22)

Here, it is understood that

F (t) ⊂ H1 and G(t) ⊂ H2

are finite-dimensional subspaces in two (possibly different) infinite-dimensional (separable)
Hilbert spaces. In particular, the spacesF(t) andG(t) all inherit the Hermitian structure from
the ambient Hilbert spaces. Furthermore, in this context, consider the Hamiltonian

H(t) : D → H1,

which is well defined on a (fixed in time) dense linear subspace

D ⊆ H1.

H(t) are also (formally) self-adjoint, i.e.

〈ϕ|H(t)ψ〉 = 〈H(t)ϕ|ψ〉 for all ϕ,ψ ∈ D. (23)

For a reason that will soon become clear we require a priori that

F (t) ⊂ D (24)

throughout the evolution. Finally, let us emphasize that the particular realization of the
Hilbert spacesH1 andH2 as well as the HamiltonianH(t) will remain implicit throughout
our discussion as it is of no consequence to the conclusions we wish to draw.
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It is now clear how to interpret the mesoscopic equation (2) within this framework.
Specifically, one needs to extend the operatorsKFG(t) through zero to the orthogonal
complement ofF(t). Also, all operatorsK∗

FG andK−1
FG need to be extended in an analogous

way. Introduce the followingshorthandnotation:

K = KFG ⊕ 0F⊥ , (25)

and

K−1 = K−1
FG ⊕ 0G⊥ . (26)

One checks directly that

K∗ = K∗
FG ⊕ 0G⊥ , (27)

and, moreover,

(K−1)∗ = (K∗)−1. (28)
The shorthand notation seems intuitive and self-explanatory, and should not be confusing.
We will refer to time-dependent families of operators of this type as the moving-domain
operators. This terminology makes no reference to the ‘moving image’ as indeed, we will
show that the image remains fixed for solutions of the mesoscopic equation, cf.Theorem 4.2.

Definition 4.1. We say that a moving-domain operatorK(t) as above is a local solution of
(2) if for all ψ ∈ D, equation

(i�K̇ + KH + B2(K∗)−1)|ψ〉 = 0, (29)

holds for allt within a certain interval, say,t ∈ [0, ε). Of course, we write

i�K̇ = −KH − B2(K∗)−1.

The first goal is to show that the mesoscopic equation (2) has the uniqueness property even
in this setting. In order to demonstrate this, the approach developed in the previous section
will be exploited again. First, observe that, in view of(26), (27), and (28), Eq.(29) implies
that for alle ∈ H2 and allψ ∈ D

〈(−i�K̇∗ + H∗K∗ + B2K−1)e|ψ〉 = 0.

Hence, the a priori assumptions(23) and (24)allow us to conclude that

i�K̇∗ = H∗K∗ + B2K−1. (30)

Of course, the latter equation is understood in the ordinary sense. (If this may at first seem
puzzling, let us point out thatK∗ sends all vectors fromH2 into F (t) ⊂ D. Therefore the
equation can be ‘evaluated’ on all vectors fromH2, and so it is expected to hold therein as,
in fact, it does.) Next, observe that for an arbitrarye ∈ H2

i�
d

dt
(KK∗)e = i�K̇K∗e + i�KK̇∗e

= (−KH − B2(K∗)−1)K∗e + K(H∗K∗ + B2K−1)e

= −KHK∗e − B2e + KH∗K∗e + B2e = 0.
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Here, the last equality is justified by the a priori assumptions(23) and (24). In particular,
it follows that sinceG(t) is the image ofKK∗, it cannot evolve in time, i.e.

G(t) = G(0).

Therefore, it is possible to represent solutions in the polar decomposition with the self-
adjoint and positive definite radial partR : G → G, which is time independent. Now, sup-
pose contrary to our expectation that(2) admits two a priori different moving-domain
solutions on the intervalt ∈ [0, ε), say

K0(t) = RU0(t),

and

K1(t) = RU1(t),

while initially

U0(0) = U1(0).

Here

U0(t), U1(t) : F (t) → G,

and the conventional extension to the whole space is understood implicitly. A direct calcu-
lation shows that

i�U̇0,1 = −U0,1H − HBU0,1,

whereHB = B2R−2. Now, observe

i�
d

dt
(U0U

∗
1) = −U0HU∗

1 − HBU0U
∗
1 + U0H

∗U∗
1 + U0U

∗
1HB

= −HBU0U
∗
1 + U0U

∗
1HB,

where, again, cancellation of two terms is justified by(23) and (24). At this stage, the
extension of operatorU∗

1 to the whole ofH2 plays no role. In fact, we can viewY = U0U
∗
1 :

G → G as being the finite-dimensional unitary operator satisfying

i�
d

dt
(Y ) = −HBY + YHB.

This is an equation of the type considered in Section 3, cf. Eq.(12). We already know it
has the uniqueness property. Therefore,Y (t) = Id is the unique solution of this equation
with the initial conditionY (0) = Id. Thus,U0(t)U1(t)∗ = Id, i.e.U0(t) = U1(t) for all t. In
summary, we have the following theorem.
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Theorem 4.1. If the mesoscopic equation(2) in the broader moving-domain interpretation
(cf.. Definition 4.1) has a local solution K(t) in the interval, say, t ∈ [0, ε), then such a
solution is uniquely defined by the initial conditionK = K(0).

The uniqueness property of(2) in such a broad Hilbert-space interpretation is a beautiful
fact, indeed. Its proof relies on the inherent structure of the equation.

Having established uniqueness of solutions we are empowered to find out the general
form of solutions. Indeed, all we need to do is display a solution general enough to satisfy an
arbitrary initial condition. Then, the uniqueness property will assure that no other solutions
have been overlooked. This being the case, it would suffice to guess solutions, as long as
they would be general enough. In what follows, it is shown how the general form of solutions
can be deduced.

In order to shed some light on the nature of moving-domain solutions, consider first a
simpler case whenF (t) = span{|ψ(t)〉}, andG(t) = span{|ϕ(t)〉}, i.e. both spaces remain
one-dimensional. Let operatorK be represented in the form

K(t) = a(t)|ϕ(t)〉〈ψ(t)|, (31)

wherea is a complex-valued function of time. Substituting, we find that Eq.(2) is translated
into the following relation:

i�(ȧ|ϕ〉〈ψ| + a|ϕ̇〉〈ψ| + a|ϕ〉〈ψ̇|) = −a|ϕ〉〈ψ|H − B2

a∗ |ϕ〉〈ψ|.

This latter equation is consistent if and only if there exist complex-valued functions of time
c1(t) andc2(t) such that

i�|ϕ̇〉 = c1(t)|ϕ〉, (32)

i�〈ψ̇| = 〈ψ|(c2(t) − H), (33)

and hence

i�ȧ = −(c1(t) + c2(t))a − B2(t)

a∗ . (34)

Of course, the general solution of(32) is given by

|ϕ(t)〉 = exp

(
− i

�

∫ t

0
c1(t′) dt′

)
|ϕ(0)〉. (35)

Next, introduce a new variable〈ψ′(t)|, which is defined as follows:

〈ψ′(t)| = exp

(
i

�

∫ t

0
c2(t′) dt′

)
〈ψ(t)|. (36)

The benefit of this is that

i�〈ψ̇′| = −〈ψ′|H. (37)
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Redefine alsoa by setting

a′ = a exp

(
− i

�

∫ t

0
(c1(t′) + c2(t′)) dt′

)
. (38)

Observe that in particularK can now be re-written in the form

K(t) = a′(t)|ϕ(0)〉〈ψ′(t)|. (39)

Moreover, substituting(38) into (34)yields

i�ȧ′ = −B2(t)

a′∗ . (40)

Furthermore, settinga′ = r exp(iΦ) leads to

(i�ṙ − �rΦ̇) exp(iΦ) = −B2

r
exp(iΦ).

Now, since the exponential factor cancels, the real and the imaginary parts of the equation
can be separated. In conclusion

r = r0 = const, Φ = 1

�r2
0

∫ t

0
B2(t′) dt′ + Φ0.

We summarize the result as the following proposition.

Proposition 4.1. Consider operatorsK(t) : F (t) → G(t), where F(t) and G(t) are one-
dimensional spaces for all t. Eq.(2) admits solutions in this form if and only if the following
two conditions hold:

1. The target spaceG(t) = G(0) = span{ϕ(0)〉} remains frozen in time.
2. There is a vectorψ′ ∈ H1 satisfying the one-particle Shr¨odinger equation

i�
d

dt
〈ψ′(t)| = −〈ψ′(t)|H, (41)

which spans the domain spaces, i.e.

F (t) = span{|ψ′(t)〉}.

When both conditions1 and2 are satisfied, then the general solution of(41)admits repre-
sentation in the form

K(t) = r0 eiΦ0 exp

(
i

�r2
0

∫ t

0
B2(t′) dt′

)
|ϕ(0)〉〈ψ′(t)|, (42)

wherer0 andΦ0 are arbitrary real numbers.
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I would like to emphasize that in particular the problem ofexistenceof solutions of the
nonlinear equation (2) has been reduced to the existence property of thelinear Schr̈odinger
equation (41). Naturally, the existence result and other properties of the latter equation are
well known, e.g. cf.[8]. Moreover, in view of this result, even the notion of regularity of
operator solutions of(2) acquires a clear meaning.

Next, let us consider the general case ofN-dimensional domain and image spaces, which
we will refer to as theN × N-dimensional case. First, let

F (t) = span{|ψn(t)〉 : n = 1, . . . , N},

and

G(t) = span{|ϕm(t)〉 : m = 1, . . . , N}.

Furthermore, letA be a complex matrix

A(t) = [amn(t)]m,n=1,...,N, amn = [A]mn.

Let the dynamic variable be represented in the form

K(t) =
∑

amn(t)|ϕm(t)〉〈ψn(t)|. (43)

(Summation is always carried out over repeated indices.) Observe that in particular

(K(t)∗)−1 =
∑

[(A(t)∗)−1]mn|ϕm(t)〉〈ψn(t)|. (44)

Initially, some progress is achieved by exploiting analogy with the 1× 1-dimensional case.
Indeed, observe that, in theN × N-dimensional case, the mesoscopic Schrödinger equation
(2) is translated into the following relation:

i�
∑

(ȧmn|ϕm〉〈ψn| + amn|ψ̇m〉〈ψn| + amn|ϕm〉〈ψ̇n|)

= −
∑

amn(t)|ϕm(t)〉〈ψn(t)|H − B2
∑

[(A(t)∗)−1]mn|ϕm(t)〉〈ψn(t)|. (45)

Just as we have seen it before, also here a simple linear consistency check will help draw far-
reaching conclusions. First, observe that for the equation to hold there must exist complex
functions of timec′

km(t) andc′′
nl(t) such that

i�|ϕ̇m〉 =
∑

c′
km(t)|ϕk〉 for all m, (46)

and

i�〈ψ̇n| + 〈ψn|H =
∑

c′′
nl〈ψl| for all n. (47)

Secondly, introduce matrices

C′(t) = [c′
km(t)]k,m=1,...,N, C′′(t) = [c′′

nl(t)]n,l=1,...,N .
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Substituting(46) and (47)into (45), one obtains

i�Ȧ + C′(t)A + AC′′(t) = −B2(t)(A∗)−1. (48)

Note that operatorK(t) as in (43) satisfies(2) if and only if the three conditions(46),
(47), and (48)are satisfied by the|ϕk(t)〉’s, 〈ψn(t)|’s and theA(t). In order to draw further
conclusions, one ought to make the following observations. First, one may require without
loss of generality that both bases|ϕm(t)〉 and 〈ψn| remain unitary during the evolution.
Indeed, the operatorK(t) can be described in arbitrary bases ofF(t) andG(t). Now, suppose
the two bases are unitary, say, att = 0. Eqs.(46) and (47)imply that the bases will remain
unitary for all time if and only if

C′(t)∗ = C′(t) and C′′(t)∗ = C′′(t), (49)

i.e. if these matrices are Hermitian. With this understood, denote byΓ ′(t) andΓ ′′(t) the
uniquely defined unitary matrices, which solve the two initial value problems:

i�Γ̇ ′ = C′(t)Γ ′, Γ ′(0) = Id,

and

i�Γ̇ ′′ = Γ ′′C′′(t), Γ ′′(0) = Id.

In particular

|ϕm(t)〉 =
∑

[Γ ′(t)]km|ϕk(0)〉 for all m. (50)

Next, define a new unitary collection of vectors〈ψ′
n(t)| as follows:

〈ψ′
n(t)| =

∑
[Γ ′′(t)]nl〈ψl(t)| for all n. (51)

Naturally, the collection|ψ′
n(t)〉 provides new unitary bases for spacesF(t). It has been

selected in such a way as to simplify Eq.(47). Indeed, a straightforward calculation shows
that

i�
d

dt
〈ψ′

n| = −〈ψ′
n|H for all n. (52)

Furthermore, set

A′(t) = Γ ′(t)A(t)Γ ′′(t), (53)

and observe that (48) implies

i�Ȧ′ = −B2(t)(A′∗)−1. (54)

We have already learned how to solve equations as this one in Section3. Indeed, applying
Theorem 3.1(with H = 0) one obtains

A′(t) =
√

A′(0)A′(0)∗ exp

(
i

�

∫ t

0
B2(t′)(A′(0)A′(0)∗)−1 dt′

)
. (55)
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In fact, the initial conditions implyA′(0) = A(0). Finally, observe that in view of(53), (50),
and (51)

K(t) =
∑

[A]mn|ϕm(t)〉〈ψn(t)| =
∑

[Γ ′(t)−1A′Γ ′′(t)−1]mn|ϕm(t)〉〈ψn(t)|

=
∑

[A′]mn|ϕm(0)〉〈ψ′
n(t)|.

In the end, one ought to substitute(55) into the expression above. In summary, we have
the following result.

Theorem 4.2. Consider an operator K(t): F (t) → G(t), where F(t) and G(t) are evolving
N-dimensional spaces. For K(t) to satisfy the mesoscopic Schr¨odinger equation(2) in the
sense ofDefinition 4.1, it is necessary and sufficient that the following two conditions be
satisfied:

1. The target space

G(t) = G(0) = span{|ϕm(0)〉 : m = 1, . . . , N},

remains frozen in time.
2. There exists a collection{ψ′

n(t)}n=1,...,N which provides unitary bases for the domain
spaces

F (t) = span{|ψ′
n(t)〉 : n = 1, . . . , N},

and, moreover, all the vectors satisfy the one-particle Shr¨odinger equation, i.e.

i�
d

dt
〈ψ′

n| = −〈ψ′
n|H. (56)

When both conditions1 and2 are satisfied, then solutions of the mesoscopic equation(2)
admit representation in the form

K(t) =
∑

[A′(t)]mn|ϕm(0)〉〈ψ′
n(t)|, (57)

where

A′(t) =
√

A′(0)A′(0)∗ exp

(
i

�

∫ t

0
B2(t′)(A′(0)A′(0)∗)−1 dt′

)
. (58)

Naturally,Proposition 4.1is a special case ofTheorem 4.2. We introduced it beforehand
not only because it is interesting in itself, but also because it provides a smooth introduction
into the internal logic of the problem. As before, all strictly analytic issues, such asexistence
andregularityof solutions of the nonlinear problem(2) rest on the corresponding properties
of thelinearSchr̈odinger equation (56). Needless to say, vast literature is available in relation
to the latter theme.

I would also like to point out thatTheorem 4.2conforms withTheorem 3.1. Both the-
orems expose a rather unobvious fact that the mesoscopic evolution is factored through



A. Sowa / Journal of Geometry and Physics 55 (2005) 1–18 17

the Schr̈odinger mechanics. Indeed, theW factor ofTheorem 3.1encodes the Schrödinger
evolution. Of course,Theorem 4.2is not a mere corollary, and its proof required additional
arguments, while also relying on the former theorem. Finally, let me emphasize that no con-
clusions have been drawn here as to the infinite-dimensional case, i.e. the case when (the non-
trivial part of) the domain ofK(t) cannot be encapsulated in a finite-dimensional spaceF(t).
There are many other questions of interest not even attempted here, particularly those per-
taining to the important case when the Schrödinger operatorH itself depends on the dynamic
variableK. The closing section explains the nature and significance of such a feedback.

5. The broader context

We will devote these concluding remarks to sketching the broader perspective in which
the results of this article ought to be seen. First, I would like to point out that these results do
not generalize to other types of operator equations. Indeed, the unique type of nonlinearity
in the mesoscopic Schrödinger equation plays a crucial role in the proofs. Specifically, it
allows separation of the radial and the unitary part in the polar decomposition of the dynamic
variable. Secondly, I would like to point out that the result is important in view of the physical
interpretation of the MeM. Indeed, it shows that only the Schrödinger particles, i.e. electrons,
can participate in the mesoscopic transport. This is not guarantied a priori, e.g. some other
type of, say, a nonlinear wave could appear in place of the Schrödinger waves, which
possibility is hereby a posteriori excluded. I will now provide a short synopsis of the physical
interpretation of the solutions according to the theory that has been put forward in[5].

Electromagnetic phenomena in vacuum are described by the classical Maxwell equations.
These equations are modified by the so-called material constants or even by introduction of
nonlinearities as modelers adapt them to describe propagation of the electromagnetic wave
in various materials. Such an approach is usually sufficient when the model is meant to reflect
what happens at the macroscopic scale. We know from experiment that in low temperatures
some materials feedback to the electromagnetic field in a more profound way. Namely, at the
nano-scale the spacial distribution of the magnetic field depends on the quantum picture of
the electronic structure of the material. This fact is of particular importance in the context of
high-temperature superconductivity and the Quantum Hall Effects. A problem arises, how
to describe the interrelation of the ambient magnetic field and the electronic structure. The
particular form of this interrelation has far reaching consequences as regards the resulting
galvanomagnetic characteristics of the material, e.g. cf. Ref.[2] in which some aspects of
this problem are analyzed assuming random distribution of the magnetic field.

The Mesoscopic Mechanics postulates that the distribution of the magnetic field assumes
a particular form depending on the quantum characteristic of the material. Specifically, let
us focus attention on an idealized planar electronic system characterized by the single-
particle HamiltonianH. Imagine this system being exposed to a perpendicular magnetic
field with magnetic inductionB. As a result of the interaction between the ambient magnetic
field and the electronic structure, the magnetic flux will get distributed over the surface
area nonuniformly. Here, depending on the properties of the system, the single-particle
HamiltonianH may or may not depend on the magnetic field. It is a basic precept of the
MeM that even if the Hamiltonian does not depend on the magnetic field, the flux distribution
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may still be nonuniform. Specifically, the MeM postulates that the distribution of flux is
determined in a certain way by an operatorK of the type considered in this article. Namely,
let Φ be the total magnetic flux through the surface, and letΥ stand for the coherent state

Υ =
∑

filled states

|ψn〉,

which in this way accounts for the actual distribution of electron states. Thesimplestpostu-
late of the MeM is that (with an appropriate normalization) the distribution of the magnetic
flux is approximately

(x, t) → Φ|K(t)Υ |2(x).

Of course, the interpretation is probabilistic. Moreover, the evolution of the system is de-
scribed viaK by the mesoscopic Schrödinger equation (2). This equation of motion is
determined by the total HamiltonianΞ, cf. Eq. (3). The total Hamiltonian accounts for
the single-electron portion of the energy, as well as the inter-electron phase correlation
energy. This latter energy is enclosed in the determinant (orentropy) term ofΞ, which is
switched on with an application of the magnetic field. I emphasize that we are looking at a
new type of interaction of the magnetic field with the Fermi sea, independent and separate
from the phenomenon of formation of Landau states. Electrons respond collectively since
they are bound together by the energy of phase correlation. Naturally, the specific features
of this phenomenon strongly depend on the energy-band structure of the material. Further
information can be found in[5].

Finally, let me point out that the total HamiltonianΞ is related to the following functional
(whose arguments are functions):

LA(ψ) =
∫

|∇Aψ|2 + B2
∫

ln(|ψ|2). (59)

Naturally, the logarithmic integral mimics the entropy term. Some properties of a particular
realization of this latter functional, especially as regards magnetic-vortex type critical points,
are described in an earlier article[7]. Last but not least, the MeM has a field-theoretic
counterpart, the Nonlinear Maxwell Theory, cf.[6], which embraces (59) as one of its
central objects, and provides models for many low-temperature phenomena.
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